3D Druck ermöglicht kleinste komplexe Mikro-Objektive

28. Juni 2016, Nr. 49

Optische Linsen, so fein wie ein Haar

3D Druck hat in den letzten Jahren die Herstellung von komplizierten Formen revolutioniert. Mithilfe von serieller Auftragung, bei der Punkt für Punkt oder Linie für Linie geschrieben wird, könnten auch die komplexesten Bauteile schnell und einfach realisiert werden. Diese Methode steht jetzt auch für optische Bauteile zur Verfügung: Forscher der Universität Stuttgart haben einen Kurzpulslaser in Kombination mit optischem Fotolack benutzt, um optische Linsen herzustellen, die kaum größer sind als ein menschliches Haar.

Dabei wird der Femtosekundenlaser, der eine Pulsdauer von weniger als 100 Femtosekunden besitzt, mithilfe eines Mikroskops in einen flüssigen Fotolack fokussiert, der vorher zum Beispiel auf einem Glasplättchen oder auf einer Glasfaser aufgebracht wurde. Zwei Photonen des roten Laserstrahls mit der Wellenlänge 785 nm werden im Brennpunkt gleichzeitig absorbiert und belichten ihn. Dadurch härtet der Fotolack. Der Laserstrahl kann mit einem Scanner oder durch Verfahren des Substrates in alle drei Raumrichtungen die gewünschte Form abfahren, die hergestellt werden soll. Dadurch lassen sich mit einer Submikrometer-Genauigkeit optische Freiformflächen herstellen. Die große Präzision erlaubt es, nicht nur kugelförmige Linsen herzustellen, sondern auch die idealeren Flächen wie Paraboloide oder Asphären höherer Ordnung. Auch mehrlinsige Objektive für Abbildungen in höchster Qualität werden erstmals möglich.

Komplexes 3D gedrucktes Objektiv auf einer optischen Faser neben einer Fliege.

Doktorand Timo Gissibl aus der Arbeitsgruppe von Prof. Harald Giessen am 4. Physikalischen Institut druckte solche Mikroobjektive auch auf Glasfasern. Damit lassen sich ganz neuartige und kleinste flexible Endoskope verwirklichen, die dazu geeignet sind, auch in kleinste Öffnungen des Körpers oder in Maschinen Untersuchungen vorzunehmen. Das Optikdesign, also der Bauplan dazu, stammte im Rahmen einer Zusammenarbeit im Stuttgarter Zentrum für Photonic Engineering (SCoPE) vom Doktoranden Simon Thiele aus der Arbeitsgruppe von Prof. Alois Herkommer am Institut für Technische Optik.

Gissibl druckte seine optischen Freiformflächen und seine Miniatur-Mikroskop-Objektive auch direkt auf CMOS-Chips, die somit einen extrem kompakten Sensor darstellten. Mit einer solchen Optik könnten Kameras für Drohnen realisiert werden, die nicht viel größer als eine Biene wären, oder auch kleinste Sensoren für selbstfahrende Autos, autonome Roboter oder für Maschinen der Industrie 4.0. Auch kleinste Körpersensoren und Rundum-Kameras für Handys sind vorstellbar.

Die Forscher konnten ihre Optiken auch mit Beleuchtungssystemen kombinieren. Dadurch kann die Optik einer LED, die das Licht in eine bestimmt Richtung konzentriert, extrem verkleinert werden. Die Stuttgarter Forscher glauben, dass mithilfe des 3D Drucks eine ganz neue Ära in der Fertigung von Miniaturoptiken anbricht. „Der Zeitraum von der Idee über das Optikdesign zum CAD-Modell und zum fertigen, gedruckten 3D Mikro-Objektiv verkürzt sich auf unter einen Tag“ sagt Prof. Harald Giessen. „Damit eröffnen wir ähnliche Möglichkeiten, wie sie seit einigen Jahren beim Computer-Integrated Manufacturing im Maschinenbau und in der Metallverarbeitung bestehen.“

Das Projekt, das im Rahmen der „Spitzenforschungs-Initiative“ der Baden-Württemberg-Stiftung gefördert wurde, arbeitet eng mit der Industrie zusammen. Das Startup-Unternehmen Nanoscribe, eine Ausgründung des Karlsruher Instituts für Technologie (KIT) in Karlsruhe, baut die hochpräzisen 3D Drucker mit integriertem Femtosekunden-Laser. Die Firma Carl Zeiss aus Oberkochen berät die Forscher in allen Fragen der Optik. Und die Weltmarktführer im Bereich der Endoskopie sitzen ebenfalls in Baden-Württemberg.

 

Ansprechpartner:

Prof. Dr. Harald Giessen, Universität Stuttgart, 4. Physikalisches Institut
Email: giessen (at) physik.uni-stuttgart.de, Tel: 0711-6856-5111
Weiteres Bildmaterial unter http://www.pi4.uni-stuttgart.de/

Referenzen:

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen: Two-photon direct laser writing of ultracompact multi-lens objectives, Nature Photonics 10 (2016).DOI: 10.1038/NPHOTON.2016.121

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen: Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres, Nature Communications 7, 11763 (2016).

S. Thiele, T. Gissibl, H. Giessen, and A. Herkommer: Ultra-compact on-chip LED collimation optics by 3D-printing, Opt. Lett. 41, 3029 (2016).

Komplexe Triplett-Linse, hergestellt durch Femtosekunden 3D Druck auf einer Monomoden-Glasfaser.
Zum Seitenanfang